Markov chain
Seorang pengusaha kaos ingin mengetahui keadaan steady state dari salah seorang karyawanya, jika probabilitas transisinya adalah sebagai berikut:
1. Probabilitas karyawan jika hari ini dan besok memproduksi adalah (0,75)
2. Probabilitas pegawai jika hari ini memproduksi dan besok tidak memproduksi adalah (025)
3. Probabilitas karyawan jika hari ini tidak memproduksi dan besok memproduksi adalah (0,45)
4. Probabilitas karyawan jika hari ini dan besok tidak memproduksi adalah (0,55)
Tentukan steady state Probabilitasnya!
Jawab:
Hari ini Hari besok
Produksi Tidak Produksi
Produksi 075 025
Tidak produksi 045 0,55
Probabilitasnya adalah
]
+ = 1
= 1 -
= 0,75 + 0,45
= 0,25 + 0,55
Maka ,
1 - = 075 * ( 1 - ) + 0,45
1 - = 0,75 – 0,75 + 0,45
1 – 0,75 = 0,45 + - 0,75
0,25 = 0,75
=
= 0,33
= 1 -
= 1 – 0,33
= 0,67
Maka hasi yang didapat adalah 0,67 untuk steady state 1 dan 0,33 untuk steady state 2
Teori keputusan
Sebuah perusahaan yang mulai berkembang yang bergerak di bidang penjualan kaos mempunyai probabilitas 0,75 untuk di perbaharui dan jika berhasil diperbaharui produk ini mempunyai probabilitas 0.90 untuk laris. Namun jika produk gagal di pasaran atau tidak berhasil diperbaharui, probabilitas menjadi hanya 0,30.
a) Gambarkan diagram pohon keputusanya!
b) Berapa Probabilitas produk ini akan menjadi laris di pasaran?
Jawab:
a) Diagram pohon keputusan
P (L) hasil 0,675
P (B) = 0,75 0,90
P (L’) 0,075
0,10
Hasil
P (L) 0,075
P (B’) = 0,25 0,30
P (L)
0,70 0,175
b). Probabilitas produk ini akan laris adalah
P (B) = 0, 75 P (B’) = 0, 25
P (L (B) = 0, 90 dan P (L(B’) = 0,30
P (L) = P (LB) + (LB’)
= P(B) P (L(B) + P(B’).P(L(B’)
= (0,75) (0,90) + (0,25) (0,30)
= 0,675 + 0,075
= 0,75 atau 75%
Keterangan :
B = Diperbaharui B’ = Tidak diperbaharui
L = Laris L’ = Tidak laris
Rabu, 09 Desember 2009
Teori Permainan
Dua buah perusahaan yang memiliki produk yang hampir sama selama ini bersaing dan berusaha untuk mendapatkan keuntungan dari pangsa pasar yang ada. Untuk keperluan tersebut, perusahaan A mengandalkan 2 strategi dan perusahaan b mengandalkan 3 strtegi, dan hasilnya terlihat pad tabel berikut ini:
Perusahaan b
Strategi harga murah (S1) Strategi harga murah (S2) Strategi harga murah (S3)
Perusahaan A Strtegi harga murah (S1) 1 8 3
Strategi harga murah (S2) 9 6 5
Tabel 4.1 strategi harga
Dari kasus diatas, bagimana strategi yang harus digunakan oleh masing – masing pemain atau perusahaan , agar masing-masing mendapatkan hasil yang optimal (kalau untung, keuntungan yang didapat besar, dan kalau harus rugi maka kerugian tersebut adalah kecil).
Jawab :
Langkah 1
Untuk pemain baris (perusahaan A), pilih nilai yang paling kecil untuk setiap baris (baris satu nilai terkecilnya 1 dan baris dua nilai terkecilnya 5). Selanjutnya dari dua nilai tersebut, pilih nilai yang paling besar, yakni 5.
Perusahaan b
Maximin
Strategi harga murah (S1) Strategi harga murah (S2) Strategi harga murah (S3)
Perusahaan A Strtegi harga murah (S1)
1
8
3
→ 1
Strategi harga murah (S2)
9
6
5
5
Tabel 4.2 strategi harga maximin
Langkah 2
Untuk pemain kolom , ( perusahaan B), pilih nilai yang paling besar untuk setriap kolom (kolomsatu nilai terbesar nya 9, kolom ke dua nilai terbesar nya 8, dan kolom kolom ketiga nilai terbesarnya 5). Selanjutnya dari ketiga nilai tersebut, pilih nilai yang paling baik atau kecil bagi B, yakni nilai 5 ( rugi yang paling kecil).
Perusahaan b
Maximin
Strategi harga murah (S1) Strategi harga murah (S2) Strategi harga murah (S3)
Perusahaan A Strtegi harga murah (S1)
1
8
3
→ 1
Strategi harga murah (S2)
9
6
5
→5
Minimax → 9 8 5
Tabel 4.3 strategi harga minimax
Langkah 3
Karena pilihan pemain baris –A dan pemain kolom B sudah sama, yakni masing-masing memilih nilai 5, maka permainan ini sudah bisa dikatakan optimal → sudah ditemukan nilai permainan (sandle point) yang sama.
Kasus 2 (strategi campuran
Dari kasus di atas, dan di karenakan adanya perkembangan pasar yang terjadi maka perusahaan A, yang tadinya hanya memiliki produk yang murah dan mahal sekarang menambah satu lagi strategi bersaingnya dengan mengeluarkan produk berharga sedang, dan hasil yang diperoleh adalah seperti pada tabel di bawah ini:
Perusahaan B
Strategi harga murah (S1) Strategi harga murah (S2) Strategi harga murah (S3)
Perusahaan A
Strtegi harga murah (S1)
3
6
8
Strategi harga sedang (S2)
-1
3
5
Strategi harga mahal (S3) 7 1 9
Tabel 4.4 tabel strtegi campuran
Dari kasus di atas, bagiman strategi yang harus digunakn oleh masing-masing pemain atau perusahaan, agar masing-masing mendapatkan hasil yang optimal (kalu untung, keuntunganya besar dan kalau rugi kerugiaan nya kecil).
Langkah 1
dari tabel di atas diambil nilai terkecil dari baris satu yaitu 3, dan untuk baris kedua nilai terkecilnya -1 dan baris ke tiga nilai terkecilnya 1. Dari ketiga nilai terkecil tersebut terpilih nilai yang paling baik atau besar yaitu 3.
Perusahaan b
Maximin
Strategi harga murah (S1) Strategi harga sedang(S2) Strategi harga mahal (S3)
Perusahaan A Strtegi harga murah (S1)
3
6
8
→ 3
Strategi harga sedang
(S2)
-1
3
5
→-1
Strategi harga mahal (S3) 7 1 9 →1
Langkah 2
Untuk pemain kolom, terpilih nilai yang paling besar dari setiap kolom yaitu (kolom satu nilai terbesarnya 8, kolom kedua nilai terbesar nya 5 dan kolom ketiga nilai terbesarnya 9. Dari ketiga nilai terbesar tersebut terpilih nilai yang paling terkecil atau nilai yang paling baik bagi B yaitu 5 (rugi yang paling kecil).
Perusahaan B
Maximin
Strategi harga murah (S1) Strategi harga sedang (S2) Strategi harga mahal (S3)
Perusahaan A Strategi harga murah (S1) 3 6 8 →3
Strategi harga sedang (S2) -1 3 5 →-1
Strategi harga mahal (S3) 7 1 9 →1
Minimax→ 7 6 9
Langkah 3
Tabel di atas menunjukan bahwa pilihan pemain baris –A dan pemain kolom B tidak sama diman pemain atau perusahaan A memilih nilai 2 dan perusahaan B memilih nilai 5, maka bisa dikatakan bahwa permainan ini belum optimal karena belum ditemukan nilai permainan (sandle point) yang sama.
Maka akan dilanjutkan dengan menggunakan strategi campuran yaitu:
Langkah 4
Masing-masing pemain akan menghilangkan strategi yang menghasilkan keuntungan atau kerugian paling buruk. Untuk pemain A strategi S2 adalah yng paling buruk, karena memungkinkan kerugian bagi A. (karena ada nilai negative /-1 ). Dan bagi pemain B, strategi S3 adalah paling buruk karena akan mengakibatkan kerugian yang paling besar.
Langkah 5
Setelah pemain A membuang strategi S2 dan pemain B membuang strategi S3, diperole tabel seperti di bawah ini:
Perusahaan B
Strategi Harga Murah (S1) Strategi harga sedang (S2)
Perusahaan A
Strategi harga murah (S1)
3 6
Strategi harga mahal (S3) 7 1
Setelah masing-masing membuang strategi yang paling buruk, maka persainagan atau permainan dilakukan dengan kondisi, perusahaan A menggunakan Strategi S1 dan S3,sementara perusahaan B, menggunakan strategi S1 dan S3.
Langkah 6
Meberikan nilai probabilitas terhadap kemungkina digunakanya kedua strategi bagi masing-masingperusahaan. Untuk perusahaan A,bila kemungkinan keberhasilan penggunaan strategi S1 adalah sebesar p, maka kemungkinan keberhasilan digunakanya strategi S3 adalah (1-p). begitu juga dengan pemain B bila kemungkina keberhasilan penggunaan strategi S1 adalah sebesar q maka kemungkinan keberhasilan digunakanya strategi S2 adalah (1-q).
Perusahaan B
Strategi harga murah (S1)
(q) Strategi harga sedang (S2)
(1-q)
Perusahaan A Strategi harga murah (S1)
(p) 3 6
Strategi harga mahal (S3)
(1-p) 7 1
Langkah 7
Mencari nilai besaran probabilitas pada setiap strategi dengan menggunakan nilai-nilai probabilitas yang ada pada masing-masing strategi untuk menghitung sandle point, dengan cara sebagai berikut:
Untuk perusahaan A
Dengan strategi S1
3p + 7(1-p) = 3p + 7 – 7p = 7 – 4p
Dengan strategi S2
6p + 1 (1-p) = 6p + 1 – 1p = 1 + 5p
Kedua persamaan tersebut digabung, maka:
7 -4p = 1 + 5p
6 = 9p
P = 6/9 = 0,667
Apabila nilai p = 0,667, maka nilai (1-p) adalah (1-0,667)= 0333.
= 3p +7(1-p) = 6p + 1(1-p)
=3 (0,667) +7(0,333) =6 (0,667) + 1(0,333)
= 4,33 = 4,33
Perusahaan B
3q + 6(1-q) = 3q + 6 -6q = 6- 3q
7q + 1(1-q) = 7q + 1-q = 1+6q
Kedua persaman tersebut di gabung maka:
6-3q = 1+6q
7 = 9q
q = 7/9 = 0,77
= 3q +6(1-q) =7q +1(1-q)
=3 (0,778) +6(0,222) =7(0,778) +1(0,222)
= 3,666 = 5,668
Perusahaan b
Strategi harga murah (S1) Strategi harga murah (S2) Strategi harga murah (S3)
Perusahaan A Strtegi harga murah (S1) 1 8 3
Strategi harga murah (S2) 9 6 5
Tabel 4.1 strategi harga
Dari kasus diatas, bagimana strategi yang harus digunakan oleh masing – masing pemain atau perusahaan , agar masing-masing mendapatkan hasil yang optimal (kalau untung, keuntungan yang didapat besar, dan kalau harus rugi maka kerugian tersebut adalah kecil).
Jawab :
Langkah 1
Untuk pemain baris (perusahaan A), pilih nilai yang paling kecil untuk setiap baris (baris satu nilai terkecilnya 1 dan baris dua nilai terkecilnya 5). Selanjutnya dari dua nilai tersebut, pilih nilai yang paling besar, yakni 5.
Perusahaan b
Maximin
Strategi harga murah (S1) Strategi harga murah (S2) Strategi harga murah (S3)
Perusahaan A Strtegi harga murah (S1)
1
8
3
→ 1
Strategi harga murah (S2)
9
6
5
5
Tabel 4.2 strategi harga maximin
Langkah 2
Untuk pemain kolom , ( perusahaan B), pilih nilai yang paling besar untuk setriap kolom (kolomsatu nilai terbesar nya 9, kolom ke dua nilai terbesar nya 8, dan kolom kolom ketiga nilai terbesarnya 5). Selanjutnya dari ketiga nilai tersebut, pilih nilai yang paling baik atau kecil bagi B, yakni nilai 5 ( rugi yang paling kecil).
Perusahaan b
Maximin
Strategi harga murah (S1) Strategi harga murah (S2) Strategi harga murah (S3)
Perusahaan A Strtegi harga murah (S1)
1
8
3
→ 1
Strategi harga murah (S2)
9
6
5
→5
Minimax → 9 8 5
Tabel 4.3 strategi harga minimax
Langkah 3
Karena pilihan pemain baris –A dan pemain kolom B sudah sama, yakni masing-masing memilih nilai 5, maka permainan ini sudah bisa dikatakan optimal → sudah ditemukan nilai permainan (sandle point) yang sama.
Kasus 2 (strategi campuran
Dari kasus di atas, dan di karenakan adanya perkembangan pasar yang terjadi maka perusahaan A, yang tadinya hanya memiliki produk yang murah dan mahal sekarang menambah satu lagi strategi bersaingnya dengan mengeluarkan produk berharga sedang, dan hasil yang diperoleh adalah seperti pada tabel di bawah ini:
Perusahaan B
Strategi harga murah (S1) Strategi harga murah (S2) Strategi harga murah (S3)
Perusahaan A
Strtegi harga murah (S1)
3
6
8
Strategi harga sedang (S2)
-1
3
5
Strategi harga mahal (S3) 7 1 9
Tabel 4.4 tabel strtegi campuran
Dari kasus di atas, bagiman strategi yang harus digunakn oleh masing-masing pemain atau perusahaan, agar masing-masing mendapatkan hasil yang optimal (kalu untung, keuntunganya besar dan kalau rugi kerugiaan nya kecil).
Langkah 1
dari tabel di atas diambil nilai terkecil dari baris satu yaitu 3, dan untuk baris kedua nilai terkecilnya -1 dan baris ke tiga nilai terkecilnya 1. Dari ketiga nilai terkecil tersebut terpilih nilai yang paling baik atau besar yaitu 3.
Perusahaan b
Maximin
Strategi harga murah (S1) Strategi harga sedang(S2) Strategi harga mahal (S3)
Perusahaan A Strtegi harga murah (S1)
3
6
8
→ 3
Strategi harga sedang
(S2)
-1
3
5
→-1
Strategi harga mahal (S3) 7 1 9 →1
Langkah 2
Untuk pemain kolom, terpilih nilai yang paling besar dari setiap kolom yaitu (kolom satu nilai terbesarnya 8, kolom kedua nilai terbesar nya 5 dan kolom ketiga nilai terbesarnya 9. Dari ketiga nilai terbesar tersebut terpilih nilai yang paling terkecil atau nilai yang paling baik bagi B yaitu 5 (rugi yang paling kecil).
Perusahaan B
Maximin
Strategi harga murah (S1) Strategi harga sedang (S2) Strategi harga mahal (S3)
Perusahaan A Strategi harga murah (S1) 3 6 8 →3
Strategi harga sedang (S2) -1 3 5 →-1
Strategi harga mahal (S3) 7 1 9 →1
Minimax→ 7 6 9
Langkah 3
Tabel di atas menunjukan bahwa pilihan pemain baris –A dan pemain kolom B tidak sama diman pemain atau perusahaan A memilih nilai 2 dan perusahaan B memilih nilai 5, maka bisa dikatakan bahwa permainan ini belum optimal karena belum ditemukan nilai permainan (sandle point) yang sama.
Maka akan dilanjutkan dengan menggunakan strategi campuran yaitu:
Langkah 4
Masing-masing pemain akan menghilangkan strategi yang menghasilkan keuntungan atau kerugian paling buruk. Untuk pemain A strategi S2 adalah yng paling buruk, karena memungkinkan kerugian bagi A. (karena ada nilai negative /-1 ). Dan bagi pemain B, strategi S3 adalah paling buruk karena akan mengakibatkan kerugian yang paling besar.
Langkah 5
Setelah pemain A membuang strategi S2 dan pemain B membuang strategi S3, diperole tabel seperti di bawah ini:
Perusahaan B
Strategi Harga Murah (S1) Strategi harga sedang (S2)
Perusahaan A
Strategi harga murah (S1)
3 6
Strategi harga mahal (S3) 7 1
Setelah masing-masing membuang strategi yang paling buruk, maka persainagan atau permainan dilakukan dengan kondisi, perusahaan A menggunakan Strategi S1 dan S3,sementara perusahaan B, menggunakan strategi S1 dan S3.
Langkah 6
Meberikan nilai probabilitas terhadap kemungkina digunakanya kedua strategi bagi masing-masingperusahaan. Untuk perusahaan A,bila kemungkinan keberhasilan penggunaan strategi S1 adalah sebesar p, maka kemungkinan keberhasilan digunakanya strategi S3 adalah (1-p). begitu juga dengan pemain B bila kemungkina keberhasilan penggunaan strategi S1 adalah sebesar q maka kemungkinan keberhasilan digunakanya strategi S2 adalah (1-q).
Perusahaan B
Strategi harga murah (S1)
(q) Strategi harga sedang (S2)
(1-q)
Perusahaan A Strategi harga murah (S1)
(p) 3 6
Strategi harga mahal (S3)
(1-p) 7 1
Langkah 7
Mencari nilai besaran probabilitas pada setiap strategi dengan menggunakan nilai-nilai probabilitas yang ada pada masing-masing strategi untuk menghitung sandle point, dengan cara sebagai berikut:
Untuk perusahaan A
Dengan strategi S1
3p + 7(1-p) = 3p + 7 – 7p = 7 – 4p
Dengan strategi S2
6p + 1 (1-p) = 6p + 1 – 1p = 1 + 5p
Kedua persamaan tersebut digabung, maka:
7 -4p = 1 + 5p
6 = 9p
P = 6/9 = 0,667
Apabila nilai p = 0,667, maka nilai (1-p) adalah (1-0,667)= 0333.
= 3p +7(1-p) = 6p + 1(1-p)
=3 (0,667) +7(0,333) =6 (0,667) + 1(0,333)
= 4,33 = 4,33
Perusahaan B
3q + 6(1-q) = 3q + 6 -6q = 6- 3q
7q + 1(1-q) = 7q + 1-q = 1+6q
Kedua persaman tersebut di gabung maka:
6-3q = 1+6q
7 = 9q
q = 7/9 = 0,77
= 3q +6(1-q) =7q +1(1-q)
=3 (0,778) +6(0,222) =7(0,778) +1(0,222)
= 3,666 = 5,668